
Java8
Advanced Stream Techniques

Сергей Куксенко

sergey.kuksenko@oracle.com, @kuksenk0

The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Slide 2/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream Design

Slide 3/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream design

I like to look at this as having chosen a design center that recognizes
that sequential is a degenerate case of parallel, rather than treating
parallel as the “weird bonus mode”. I realize that this choice was
controversial and definitely caused some compromises, but eventually
people will have to start to unlearn their sequential biases, and
there’s no time like the present.

(c) Brian Goetz

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-February/011870.html

Slide 4/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-February/011870.html

Ordered/Unodered

Slide 5/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

forEach

collection.forEach(Consumer <T> action);

VS

stream.forEach(Consumer <T> action);

Slide 6/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

forEach

iterable.forEach(Consumer <T> action);

VS

stream.forEach(Consumer <T> action);

Slide 7/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Iterable.forEach

/**

* ... Unless otherwise specified by the implementing

* class , actions are performed in the order of

* iteration (if an iteration order is specified).

* ...

*/

iterable.forEach(Consumer <T> action);

Slide 8/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream.forEach

/** ...

* The behavior of this operation is explicitly

* nondeterministic. For parallel stream pipelines ,

* this operation does not guarantee to respect the

* encounter order of the stream , as doing so would

* sacrifice the benefit of parallelism.

* If the action accesses shared state , it is

* responsible for providing the required

* synchronization.

* ...

*/

stream.forEach(Consumer <T> action);

Slide 9/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Stream.forEachOrdered

/** ...

* This operation processes the elements one at

* a time , in encounter order if one exists.

* Performing the action for one element happens -before

* performing the action for subsequent elements ,

* but for any given element , the action may be

* performed in whatever thread the library chooses.

* ...

*/

stream.forEachOrdered(Consumer <T> action);

Slide 10/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo0

Slide 11/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo0

List <Long > list;

public List <Long > oldSchool () {

List <Long > l = new ArrayList <>();

for (Long v : list) {

if ((v & 0xff) == 0) {

l.add(v);

}

}

return l;

}

Slide 12/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo0

Sequential/Ordered

list.stream ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());

Slide 13/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo0

Sequential/Unordered

list.stream ()

.unordered ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());

Slide 14/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo0

Parallel/Ordered

list.parallelStream ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());

Slide 15/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo0

Parallel/Unordered

list.parallelStream ()

.unordered ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());

Slide 16/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Results

list == range from 0 to 10000000;

oldSchool 13
Sequential/Ordered 10
Sequential/Unordered 10
Parallel/Ordered 20
Parallel/Unordered 26

throughput, ops/sec

Slide 17/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Spliterator или что у Stream’а под капотом

Slide 18/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Spliterator

interface Spliterator <T> {

...

long estimateSize (); // Long.MAX_VALUE if unknown

boolean tryAdvance(Consumer <T> action);

Spliterator <T> trySplit ();

int characteristics ();

...

}

Slide 19/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Характеристки Stream’а (Spliterator’а)

ORDERED

DISTINCT

SORTED

SIZED

SUBSIZED

NONNULL

IMMUTABLE

CONCURRENT

Slide 20/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1

Slide 21/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1

Как получить сумму четных чисел Фибоначчи

не превышающих 4000000 1 ?

1http://projecteuler.net
Slide 22/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

http://projecteuler.net

Demo1

Как получить сумму четных чисел Фибоначчи

не превышающих 𝑁?

Slide 23/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1 prequel

Получить Фибоначчи Stream

Сложить первые 4096 элементов

Slide 24/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1 prequel results

sum of limit(4096)

’no load’

’heavy load’

OldSchool 849

55

Generator/Sequential 804

53

Iterator/Sequential 760

53

Iterate/Sequential 662

54

Iterator/Parallel 219

105

Iterate/Parallel 223

106

throughput, ops/sec

Slide 25/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1 prequel results

sum of limit(4096)

’no load’ ’heavy load’
OldSchool 849 55
Generator/Sequential 804 53
Iterator/Sequential 760 53
Iterate/Sequential 662 54
Iterator/Parallel 219 105
Iterate/Parallel 223 106

throughput, ops/sec

Slide 25/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1 results

𝑁 = 4 * 102048

’no load’

’heavy load’

OldSchool 239

56

Iterator/Sequential 225

55

Iterate/Sequential 216

54

Iterator/Parallel 208

72

Iterate/Parallel 209

72

throughput, ops/sec

Slide 26/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo1 results

𝑁 = 4 * 102048

’no load’ ’heavy load’
OldSchool 239 56
Iterator/Sequential 225 55
Iterate/Sequential 216 54
Iterator/Parallel 208 72
Iterate/Parallel 209 72

throughput, ops/sec

Slide 26/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Demo2

Slide 27/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

MonteCarlo

𝜋 = 4× 𝑀
𝑁

𝑁 - брошено
𝑀 - попало

Slide 28/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

MonteCarlo results

OldSchool 14
ZipBoxed/Sequential 126
ZipDouble/Sequential 23
ZipDouble/Parallel 20
ZipUnsafe/Sequential 24
ZipUnsafe/Parallel 9
ZipPaired/Sequential 22
ZipPaired/Parallel 8

time, secs/op

Slide 29/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Leibniz

𝜋
4 =

∑︀∞
𝑛=0

(−1)𝑛

2𝑛+1

Slide 30/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Leibniz results

OldSchool 1175
Stream/Sequential 1507
Stream/Parallel 600

time, ms/op

Slide 31/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Thank you!

Slide 32/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

Q & A ?

Slide 33/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.

	Stream Design
	Ordered/Unodered
	Demo0
	Spliterator или что у Stream'а под капотом
	Demo1
	Demo2

