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The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.
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Stream Design
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Stream design

I like to look at this as having chosen a design center that recognizes
that sequential is a degenerate case of parallel, rather than treating
parallel as the “weird bonus mode”. I realize that this choice was
controversial and definitely caused some compromises, but eventually
people will have to start to unlearn their sequential biases, and
there’s no time like the present.

(c) Brian Goetz

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-February/011870.html
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Ordered/Unodered
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forEach

collection.forEach(Consumer <T> action );

VS

stream.forEach(Consumer <T> action );
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forEach

iterable.forEach(Consumer <T> action );

VS

stream.forEach(Consumer <T> action );
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Iterable.forEach

/**

* ... Unless otherwise specified by the implementing

* class , actions are performed in the order of

* iteration (if an iteration order is specified ).

* ...

*/

iterable.forEach(Consumer <T> action );
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Stream.forEach

/** ...

* The behavior of this operation is explicitly

* nondeterministic. For parallel stream pipelines ,

* this operation does not guarantee to respect the

* encounter order of the stream , as doing so would

* sacrifice the benefit of parallelism.

* If the action accesses shared state , it is

* responsible for providing the required

* synchronization.

* ...

*/

stream.forEach(Consumer <T> action );
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Stream.forEachOrdered

/** ...

* This operation processes the elements one at

* a time , in encounter order if one exists.

* Performing the action for one element happens -before

* performing the action for subsequent elements ,

* but for any given element , the action may be

* performed in whatever thread the library chooses.

* ...

*/

stream.forEachOrdered(Consumer <T> action );
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Demo0
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Demo0

List <Long > list;

public List <Long > oldSchool () {

List <Long > l = new ArrayList <>();

for (Long v : list) {

if ((v & 0xff) == 0) {

l.add(v);

}

}

return l;

}
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Demo0

Sequential/Ordered

list.stream ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());
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Demo0

Sequential/Unordered

list.stream ()

.unordered ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());
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Demo0

Parallel/Ordered

list.parallelStream ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());
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Demo0

Parallel/Unordered

list.parallelStream ()

.unordered ()

.filter(x -> (x & 0xff) == 0)

.collect(Collectors.toList ());
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Results

list == range from 0 to 10000000;

oldSchool 13
Sequential/Ordered 10
Sequential/Unordered 10
Parallel/Ordered 20
Parallel/Unordered 26

throughput, ops/sec
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Spliterator или что у Stream’а под капотом
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Spliterator

interface Spliterator <T> {

...

long estimateSize (); // Long.MAX_VALUE if unknown

boolean tryAdvance(Consumer <T> action );

Spliterator <T> trySplit ();

int characteristics ();

...

}
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Характеристки Stream’а (Spliterator’а)

ORDERED

DISTINCT

SORTED

SIZED

SUBSIZED

NONNULL

IMMUTABLE

CONCURRENT
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Demo1
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Demo1

Как получить сумму четных чисел Фибоначчи

не превышающих 4000000 1 ?

1http://projecteuler.net
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Demo1

Как получить сумму четных чисел Фибоначчи

не превышающих 𝑁?
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Demo1 prequel

Получить Фибоначчи Stream

Сложить первые 4096 элементов
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Demo1 prequel results

sum of limit(4096)

’no load’

’heavy load’

OldSchool 849

55

Generator/Sequential 804

53

Iterator/Sequential 760

53

Iterate/Sequential 662

54

Iterator/Parallel 219

105

Iterate/Parallel 223

106

throughput, ops/sec
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Demo1 prequel results

sum of limit(4096)

’no load’ ’heavy load’
OldSchool 849 55
Generator/Sequential 804 53
Iterator/Sequential 760 53
Iterate/Sequential 662 54
Iterator/Parallel 219 105
Iterate/Parallel 223 106

throughput, ops/sec
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Demo1 results

𝑁 = 4 * 102048

’no load’

’heavy load’

OldSchool 239

56

Iterator/Sequential 225

55

Iterate/Sequential 216

54

Iterator/Parallel 208

72

Iterate/Parallel 209

72

throughput, ops/sec
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Demo1 results

𝑁 = 4 * 102048

’no load’ ’heavy load’
OldSchool 239 56
Iterator/Sequential 225 55
Iterate/Sequential 216 54
Iterator/Parallel 208 72
Iterate/Parallel 209 72

throughput, ops/sec
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Demo2
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MonteCarlo

𝜋 = 4× 𝑀
𝑁

𝑁 - брошено
𝑀 - попало
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MonteCarlo results

OldSchool 14
ZipBoxed/Sequential 126
ZipDouble/Sequential 23
ZipDouble/Parallel 20
ZipUnsafe/Sequential 24
ZipUnsafe/Parallel 9
ZipPaired/Sequential 22
ZipPaired/Parallel 8

time, secs/op
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Leibniz

𝜋
4 =

∑︀∞
𝑛=0

(−1)𝑛

2𝑛+1

Slide 30/33. Copyright c○ 2014, Oracle and/or its affiliates. All rights reserved.



Leibniz results

OldSchool 1175
Stream/Sequential 1507
Stream/Parallel 600

time, ms/op
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Thank you!
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Q & A ?
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